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Abstract
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Evasion of host immune systems has become a norm for infectious viruses. However, host system also plays defensive games to 
combat and inhibit virus establishment in the body. Components of the innate immune system such as cytokines, interferon, comple-
ments, etc. act as the first and furious defense against these pathogens upon sensation. If the pathogen sustains longer, the adaptive 
immune system wakes up and eliminates it protecting the body. The combined actions of innate and adaptive immunity use several 
immune cells and components and determine the fate of an antigen. 

Viruses are obligate intracellular parasites that need to find a 
preferred way to enter into the susceptible host cell by crossing 
cellular membrane and exploit the usual cellular processes such as 
capsid destabilization, and uncoating along with the proper action 
of nucleic acids to initiate the infection cycle in the human body 
[1,2]. Furthermore, it is well known that the initial mode of viral 
entry is the identification and recognition of host pattern recogni-
tion receptors (PRRs), for instance, toll-like receptors (TLR) [3,4]. 

Furthermore, several IFN-stimulated genes (ISGs) is triggered 
by activated interferon produced by the infected host cells, which 
later function to inhibit the virus replication, to promote immune 
systems to the antiviral state and finally to activate the adaptive 
immune response [3,17,18]. Some of these ISGs include viperin, a 
virus inhibitory protein modulating IFN-β production by activat-
ing signaling pathways, IRF3, IRF7 and PRRs (activation of this 
protein is distinctly induced by Sinbis virus, human cytomegalo-
virus, Sendai virus, etc.) [3,17,19]; tetherin, another IFN-induced 
protein that is composed of an unusual structure with three do-
mains (two membrane-anchoring domains at both N-termini and 
C-termini, and a middle coiled domain) that act to make a link be-
tween virus and cellular membrane and thereby can capture the 
enveloped pathogens, for example, human immunodeficiency vi-
rus-1 [3,17,18]; another protein, SAMHD1 (sterile alpha motif and 
histidine-aspartic domain - 1), plays an antiviral activity by inhibit-
ing transcriptions of both non-retroviruses and retroviruses such 
as herpes simplex virus type I and vaccinia virus [3,20]. Further-
more, protein kinase R, a detector protein that is capable to detect 
dsRNA in the cytosol, which uniquely provide signals to activate 
Nuclear factor (NF)-kB and thus, to inhibit the initiation of transla-
tion [21]. Defense by innate immune system of the host is not lim-
ited to the functioning proteins; however, a small portion of siRNAs 
and miRNAs also act to prevent virus infection [3]. 

Introduction 

Human body usually responses to the viruses by activating the 
immune system [1,5]. After the entry of the virus into the cell, host 
downstream signals try to combat the virus. The process includes 
initiation of a cascade pathway to secrete pro-inflammatory cyto-
kines and interferon, body’s first-line defense against viral infec-
tions [3,6]. However, viruses are sometimes able to hide themselves 
from the adverse effects of host immune cells, and cause disease 
progression, especially if the host is immunocompromised [7]. On 
the other hand, protection to the host itself is gained by either gain-
ing tolerance to the caused infections or through activating the im-
mune defense mechanisms [8,9]. 

Innate immunity starts activation and defends the host to the in-
fections as soon as after the adhesion of viral protein with the PRRs 
[3,4]. Different types of PRR are engaged in this recognition process 
[3,4]. These include TLR3, which is specific for double-stranded 
RNA and normally recognizes virus-infected cells in the body; on 
the other hand, TLR7 and TLR8, detect only single-stranded RNA 
and detect and bind to the viral RNA present in the infected senti-
nel cells; furthermore, retinoic acid inducible gene- I (RIG-I) detects 
and locate viruses in the cytosol of virus-infected cells [4,8]. A cas-
cade pathway is activated by TLR producing pro-inflammatory mol-
ecules (IL-1 and IL-18) as well as three classes of interferon, firstly, 

Actions of innate immunity to defend virus establishment 

interferon type I (composed of IFN-α and IFN-β), secondly, type II 
interferon (IFN-γ) and finally, newly reported type III interferon 
(IFN-λ1, IFN-λ2, and IFN-λ3) [3,10-12]. A new class of interferon, 
type III interferon, identified by Durbin research group [13], was 
found to have antiviral activity as like as type I interferon located in 
the mucosal surfaces, e.g., respiratory tract and gut [14-16]. How-
ever, antiviral activity of type III interferon has been documented 
to be limited to respiratory syncytial virus, influenza A virus and 
rotavirus [14]. 
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To combat the immune responses, viruses are making changes 
to their genome regularly which in turn upgrading their infection 
causing mechanisms Further studies are needed to understand 
the molecular mechanisms of viral evasion and the defense sys-
tems against the host immunity. Furthermore, to develop vaccines 
against deadly viral infections, it is essential to study the continu-
ous modifications of virus proteins which play vital role to evade 
the host immunity.

Several immune cells such as neutrophils, Natural killer cells, 
dendritic cells, mast cells, etc. are activated to prevent the virus 
infections in innate system [22-24]. Neutrophils play an important 
role in combatting acute inflammatory infections which finally mi-
grate to the virus infected sites rapidly [25,26]. They are activated 
by signals conveyed by TLRs and damage-associated molecular pat-
terns (DAMPs) upon the infection caused by virus [26,27]. Another 
potent immune cell, NK cell is involved with the cellular innate im-
mune response to viral infections [28-30]. Furthermore, NK cell 
functions as an effector cell possessing the both cytokine and cyto-
toxicity productions, and maintain a balance between the activation 
and inhibitory signaling [28]. For instance, during viral hepatitis, 
in the presence of IL-10, NK cells seem to produce less IFN-γ (anti-
inflammatory cytokine) with a relatively increased cytotoxicity to 
the host cells [28,30]. 

Innate and adaptive immune systems co-stimulate each other 

Adaptive immune response is essential for the inhibition of vi-
ral infections and to keep a memory to prevent the repeated infec-
tions caused by the same pathogen [33]. The activation of adaptive 
immune responses to viral infections needs a few days to weeks 
[33,34]. This activation process involves some antigen presenting 
cells (APC) such as neutrophils (later differentiated into muscles 
macrophages and dendritic cells, which act as bridges between the 
adaptive and innate immunity), which up regulate co-stimulatory 
molecules, for instance,CD80 and CD86, and pro-inflammatory cy-
tokines, e.g., interferon (IFN), tumor necrosis factor (TNF) and in-
terleukin (IL)-1, IL-6, IL-12 [26,33,35,36]. These induced immune 
components further activate other immune cells such as dendritic 
cells, and promote migrations to the secondary lymphoid tissues 
[33,35,37,38]. Peptides derived from the virus are presented on the 
activated cells surface by major histocompatibility complex (MHC) 
class II [39]. These peptides provide co-stimulatory signals to acti-
vate CD4+ T cells from the naïve state [35,39]. 

Differentiation of the activated CD4 + T cells results into T help-
er (H) 1, TH2, TH4, TH17, TFH (follicular) and regulatory T cells 
(Treg) cells [35,40,41]. Furthermore, these cells function different-
ly as their nature of communications, where TH1 and TH2 produc-
es IFN-γ and IL-4 respectively to help the macrophages activation 
and B cells differentiation respectively [35,42]. Additionally, TFH 
enter into the B cell follicles and helps to activate the B cells with in-
teracting with CD40, which later produce specific antibody against 
viral infections [43,44]. On the other hand, TH17 acts against some 
of the deadly viruses such as vaccinia virus, influenza viruses, HSV, 
etc.), and Treg cells regulate the functions of other T cells and in-

Activation of adaptive immunity to prevent viral infections

Both innate and adaptive immunity are the ultimate counter-
part for each other and are needed to control viral infection ef-
fectively [8,51]. Innate immunity control viruses defending in 
the early phase infections such as virus entry, replication, and if 
pathogens manage to evade such responses, innate immune cells 
generate co-stimulatory signals to the adaptive system using pro-
inflammatory molecules [8]. Then T and B cells are activated and 
differentiated. Furthermore, immunoglobulin that are specific to 
the virus infections bind and block the viral spread [8,52]. On the 
other hand, CTL eliminates the cells infected by viruses [8,44]. Lat-
er, some of these immune cells act as memory cells in the immune 
system to prevent further infections. 

Conclusions 

On the other hand, Virus infected cells express antigens in as-
sociation with MHC class I on its surface and activate CD8+ T cells 
[39,46]. MHC I carrying the antigenic determinant binds to the TCR 
(T cell receptor) and through CD80 and CD86, it provides signals to 
CD8+ T cells [39,46]. After receiving the signals from the infected 
cells, CD8+ T cells are started proliferation and differentiation into 
CTL and if necessary, it can lyse the infected cells by secreting per-
forin and granzymes, and activates cytokines like TNF-α, IL-2 and 
IFNγ to promote apoptosis by the macrophages [46,48,49]. At the 
same time, few differentiated CTLs, THs and plasma cells turn into 
the memory cells which further provide rapid and robust immune 
responses if re-infection happens [8,50]. 

In addition to function in allergic responses, mast cells play im-
portant role as cellular component of innate immune systems to vi-
ral infections [23,24,31]. After activation by cytokines they release 
pro-inflammatory cytokines, followed by stimulating other immune 
cells, for example, phagocytes to be recruited to the infection site 
[23,24,31]. Mast cells can also activate and promote adaptive im-
mune responses by activation of T and B cell [23,31]. Additionally, 
another immune cell, plasmacytoid dendritic cell was documented 
to have antiviral response to influenza A virus [21,32]. Activation 
of these cells are occurred by TLR7-dependent manner and they 
are reported to produce type I interferon acting against the viral 
infection [16,21]. 

flammatory substances from over-exuberant immune responses 
as well as immunopathology [35,45]. Additionally, by the help of 
IL-2, CD4+ T cells are activated and differentiated into cytolytic T 
cells (CTL) to kill viral infected cells directly [35,46,47]. 
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