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Abstract
Lassa virus (LASV) is responsible for an acute viral hemorrhagic fever known as Lassa fever. Sequence analyses of LASV 
proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and 
binding site depiction could allow novel drug findings for drug discovery field against this virus. To induce both humoral 
and cell-mediated immunity peptide sequence SSNLYKGVY, conserved region 41–49 amino acids were found as the most 
potential B-cell and T-cell epitopes, respectively. The peptide sequence might intermingle with 17 HLA-I and 16 HLA-II 
molecules, also cover 49.15–96.82% population coverage within the common people of different countries where Lassa virus 
is endemic. To ensure the binding affinity to both HLA-I and HLA-II molecules were employed in docking simulation with 
suggested epitope sequence. Further the predicted 3D structure of the most immunogenic protein was analyzed to reveal out 
the binding site for the drug design against Lassa Virus. Herein, sequence analyses of proteome identified the most immu-
nogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow 
novel drug findings for drug discovery field against this virus.
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Introduction

Lassa virus (LASV) includes Arenaviridae virus family 
which causes Lassa fever (LF) disease. LASV is trans-
mitted to human by a rodent named Mastomys natalensis. 
LASV is responsible for fatal hemorrhagic fever due to its Electronic supplementary material  The online version of this 

article (http​s://doi.org/10.1007​/s132​05-018-1106​-5) contains 
supplementary material, which is available to authorized users.
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capability to infect the highest number of people including 
100,000–300,000 and 5000–10,000 annual deaths in western 
Africa. There is no licensed vaccine invented against Lassa 
virus yet. Carrying on research to develop vaccine is becom-
ing cost effective due to non-human primate models and bio-
containment requirements (BSL-4) (McCormick and Fisher 
2002; Khan et al. 2008; Fichet-Calvet and Rogers 2009; 
Richmond and Baglole 2003; Loureiro et al. 2011; Charrel 
and de Lamballerie 2003). There are different areas assum-
ing to be affected by Lassa fever, such as 10% of Ghana, 30% 
of each of Côte d’Ivoire, Togo and Benin, 40% of Nigeria, 
50% of Guinea, 80% of Sierra- Leone and Liberia (Fichet-
Calvet and Rogers 2009) and a few areas of Mali (Safronetz 
et al. 2010). About 200 million people of West Africa like 
Nigeria and Senegal are at high risk for outbreak of LASV 
(Charrel and de Lamballerie 2003). Sometimes North Amer-
ica, Europe and Japan revealed the existence of LASV. There 
are some viruses responsible for hemorrhagic fever such as 
Ebola, LASV and Marburg virus. Among them LASV is the 
most frequently imported virus by returning travelers (Wolfe 
and Macher 2006; Gunther et al. 2001; Schmitz et al. 2002). 
Many areas of Europe such as Germany (Haas et al. 2003; 
Gunther et al. 2000), Netherlands (Weekly epidemiologi-
cal record 2000) and the United Kingdom (Communicable 
disease report CDR weekly 2000) are affected by imported 
LASV. Some vaccination processes like immunization with 
inactivated LASV showed nearly no efficacy. Therefore, it 
is urgent to develop an efficient vaccine with a view to repel 
an extreme outbreak of this disease.

Epitope or peptide based vaccine is more eligible than 
the conventional vaccines due to its easy production, more 
specificity, and also safety. Two types of proteins are found 
in a virus. One is found in its surface and another is secreted 
from that virus. Both of them are antigenic and pathogenic 
(Hasan et al. 2015; Cerdino-tarraga et al. 2003). So, they 
are considered for vaccination. Portions of these proteins 
bind with antibodies as they are recognized as antigenic. 
The identification of B-cell epitope is required to design 
vaccine (Larsen et al. 2006a, b). Specific binding of Anti-
gen to HLA alleles (MHC-I and MHC-II) might induce an 
effective immune response (Kuhns et al. 1999; Watts 1997; 
Germain 1994).

Recently, several bioinformatics tools and servers are 
being used to predict both B-cell and T-cell epitopes pre-
cisely. Researchers tried to develop the way by in silico 
studies for the advancement of better medication against 
cancer and autoimmune diseases by predicting candi-
date antigens from which they could propose the suitable 
epitopes for vaccination. (Hammer et al. 1995; Saha and 
Raghava 2006; Segal et al. 2008; Stassar et al. 2001). This 
approach of vaccine designing is used in a long range to 
defeat many diseases such as multiple sclerosis (Bourdette 
et al. 2005) malaria (Lopez et al. 2001) and tumors (Knutson 

et al. 2001). The identification of HLA class I and II ligands, 
B-cell and T-cell epitopes is crucial to design epitope-based 
vaccine (Petrovsky and Brusic 2002). To predict the T-cell 
epitope is required the identification of proteasomal peptide 
cleavage sites, major histocompatibility complex (MHC) 
binding peptides, and transporters associated with antigen 
presentation (TAP) molecules. These identifications are 
achieved by computational approaches using several tools 
and servers (Brusic et al. 2004; Peters et al. 2003; Bhasin 
and Raghava 2004; Nielsen et al. 2005). B-cell epitope iden-
tification is helpful to predict more potential peptide vaccine 
candidate. Further, allergenicity assessment is required to 
avert any harm for human health. We have used these in sil-
ico approach on LASV to design a synthetic peptide vaccine 
candidate. For the post therapy against LASV we have also 
tried to identify the binding and active site by predicting 3D 
model. So, this study also could pave the lead to design drug 
candidates on glycoprotein for the treatment against LASV.

Materials and methods

Retrieving protein sequences

Available all the protein sequences of LASV were retrieved 
in FASTA format from UniProtKB (http​://www.unip​rot.org) 
for this study.

Prediction of the most potent antigenic protein

Each of the retrieved FASTA sequence of corresponding 
protein was submitted in VaxiJen v2.0 (Doytchinova and 
Flower 2007) in plain format to identify the antigenic score. 
The protein with highest antigenic score was not taken for 
further analysis because polymerase protein could not be 
ideal for vaccine design as it is needed for DNA synthesize. 
In this case, glycoprotein (UniprotKBID: D6NLU3) could be 
ideal candidate for vaccine design as it is a surface protein.

Prediction of T‑cell epitope

NetCTL 1.2 server which is based on neural network archi-
tecture was utilized to predict the Cytotoxic (CD8+) T-cell 
epitopes for each of the 12 HLA class I super types (A1, A2, 
A3, A24, A26, B7, B8, B27, B39, B44, B58, B62) (Larsen 
et al. 2007; Lund et al. 2004). The selected FASTA sequence 
of the glycoprotein was submitted to this server at 0.5 thresh-
old level to have sensitivity and specificity of 0.89 and 0.94, 
respectively which allowed to find out more epitopes. An 
integrated value of transporter of antigenic peptide (TAP) 
transport efficiency, MHC-I binding and proteasomal cleav-
age efficiency values were also measured by this web-based 
tool.

http://www.uniprot.org


3 Biotech (2018) 8:81	

1 3

Page 3 of 14  81

Immune epitope database (IEDB) was utilized to predict 
the MHC-1 binding with the selected epitope by the meas-
urement of IC50 values (Buus et al. 2003). The alleles hav-
ing binding affinity IC50 less than 200 nm were chosen for 
selected 5 epitopes for further analysis.

Proteasomal cleavage/TAP transport/MHC class I com-
bined predictor (Lundegaard et al. 2006) was used to find 
proteasomal cleavage score, TAP score, processing score 
and MHC-I binding score which are essential for the suit-
able T-cell epitope.

MHC class II epitope prediction

The most probable MHC class I T-cell epitope was stud-
ied to know whether it can generate MHC class II immune 
response. For this reason, MHC-II binding prediction tools 
were used from immune epitope database (IEDB) (Wang 
et al. 2010). HLA-DP, HLA-DQ and HLA-DR alleles of 
human were separately estimated.

Epitope conservancy analysis

To analyze the conservancy of each peptide of selected 5 
epitopes, the web-based tool from IEDB (Bui et al. 2007) 
analysis resource was performed. Conservancy of each 
epitope was estimated for both filtered proteins and all of 
the glycoprotein of LASV found in UniProtKB.

Population coverage prediction

Predicted 5 epitopes with corresponding different HLA 
Class I and II alleles were submitted to the population cov-
erage analysis tool of IEDB (http​://tool​s.immu​neep​itop​e.org/
tool​s/popu​lati​on/iedb​ input) with the default parameters like 
“Query by: Area, Country and Ethnicity” to find out the 
human population coverage for each epitope.

Design of the three‑dimensional (3D) epitope 
structure

The conserved T-cell epitope peptide sequence SSNLYK-
GVY was employed in PEP-FOLD (Thevenet et al. 2012) 
server to build the 3D structure that was further utilized to 
analyze the interactions with HLA (I and II).

Docking simulation study

Before performing the docking simulation study the 3D 
crystal structure of HLA-B*15:01 (PDB ID:1XR8) and 
HLA-DR (PDB ID:1D5 M) from HLA-II were retrieved 
from RCSB (Research Collaboratory for Structural Bio-
informatics) (Berman et al. 2000) and then prepared for 
docking runs by removing the ligands from these structure. 

Thereafter, Autodock Vina (Trott and Olson 2010) was used 
for the assurance of the binding between HLA (I and II) 
molecules predicted epitope, SSNLYKGVY.

Prediction of B‑cell epitope

The portion of the antigen that interacts with B-lympho-
cytes is the B-cell epitope. It is required to know whether 
the potential epitope is able to generate humoral immune 
response interacting with B lymphocyte as it is the only 
target to predict B-cell epitope (Nair et al. 2002). B-cell 
antigenicity was identified using different tools available in 
IEDB. These tools are Kolaskar and Tongaonkar antigenic-
ity scale (Kolaskar and Tongaonkar 1990), Emini surface 
accessibility prediction (Emini et al. 1985), Karplus and 
Schulz flexibility prediction (Karplus and Schulz 1985) and 
Bepipred linear epitope prediction analysis (Larsen et al. 
2006a, b). The antibodies can recognize beta turn of the 
protein (Rini et al. 1992). Such kind of property makes the 
beta turn of the protein as an antigenic. The beta turn was 
predicted using the Chou and Fasman beta-turn prediction 
tool (Chou and Fasman 1978).

Allergenicity assessment

AllerHunter was utilized to predict the sequence-based aller-
genicity of the epitopes (Liao and Noble 2010; Muh et al. 
2009) which is constructed on a combination with support 
vector machine (SVM).

Structural analysis of most potent antigenic protein

The three-dimensional (3D) structure of glycoprotein of 
LASV was constructed using protein modeling software 
MODELLER 9v11 (Šali et  al. 1995) through HHpred 
(Söding et al. 2005; Söding 2005). Energy minimization 
of the 3D built model was performed by the utilization of 
YASARA (Yet Another Scientific Artificial Reality Appli-
cation) (Krieger et al. 2009; Sippl 1993; Sander and Vriend 
1993; Kuszewski and Clore 1997) server to refine the any 
gaps and structural alignment of the 3D structure. The pre-
dicted 3D model of glycoprotein was evaluated by ProCheck 
tools (Laskowski et al. 1993) and Anolea (Melo et al. 1997).

Binding site study

We used the Meta pocket server 2.0 (Bingding 2009) and 
Discovery studio (Van Joolingen et al. 2005) for analyzing 
binding site and facilitating the drug binding to our projected 
model. By these servers, the predicted binding site of our 
created model could be employed for the detection of effec-
tive drugs against glycoprotein.

http://tools.immuneepitope.org/tools/population/iedb
http://tools.immuneepitope.org/tools/population/iedb
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Active site study

Active site analysis was performed to enrich a considerable 
insight of the docking simulation study. Computed Atlas 
of Surface Topography of proteins (CASTp) (Dundas et al. 
2006) was used to explore the active amino acid residues of 
the built model. Therefore, the binding sites, active sites, 
internal cavities of proteins, structural pockets, area, shape 
and volume of every pocket were identified and determined.

Results

Retrieving protein sequences

A total of 1046 protein sequences, all the available pro-
teins of various LASV strains in UniProtKB after filtering, 
including 225 glycoproteins, 2 polymerase RDRP, 28 RNA-
directed RNA polymerase L, 6 envelope glycoprotein, 298 
polymerase, 1 glycoprotein C, 1 putative glycoprotein, 2 
nucleocapsid protein, 312 nucleoprotein, 24 pre-glycopro-
tein polyprotein GP complex, 3 ring finger protein, 144 Z 
protein were retrieved from UniProtKB database Supple-
mentary table, S1.

Prediction of the most potent antigenic protein

VaxiJen v2.0 server revealed the highest surface antigenic 
protein UniprotKB id: D6NLU3 which is glycoprotein with 
a total prediction score of 0.6739 Supplementary table, S1. 
Herein, D6NLU3 has been selected over the other polymer-
ase and Z protein because they could not be ideal for vaccine 
design as they are not the surface protein.

Prediction of T‑cell epitope

The best 5 epitopes were selected based on combinatorial 
score from NetCTL prediction server (Table 1).

The MHC-I alleles for which the epitopes showed 
higher affinity (IC50 < 200 nM) were selected for further 
analysis from IEDB database (Table 2). There is an inverse 

relationship between binding affinity of the epitopes with 
the MHC-I alleles and IC50 values.

The proteasome complex is responsible for cleavage of 
peptide bonds of proteins to convert them into peptides. 
These peptides are transported to endoplasmic reticulum 
TAP (transporter of antigenic peptides) where they bind 
to MHC-I molecules. These peptide-MHC molecules are 
then transported to the cell membrane where they are pre-
sented to cytotoxic T cell. In this case, the overall score 
was taken as the higher the overall score meant the higher 
the efficiency of all these processes. The predicted overall 
score in represented shortly in Table 2.

Among the 5 T-cell epitopes, a 9-mer epitope, SSN-
LYKGVY, position: 41–49 was found to interact with 
the most MHC-I alleles including HLA-B*27:20, HLA-
B*15:17, HLA-C*12:03, HLA-B*15:02, HLA-A*32:07, 
HLA-B*15:03, HLA-A*68:23, HLA-C*14:02, HLA-
C*03:03, HLA-B*40:13, HLA-B*15:01, HLA-C*07:01, 
HLA-A*32:15, HLA-B*35:01, HLA-C*15:02, HLA-
C*06:02, HLA-A*01:01. Besides, SSNLYKGVY was 
found to interact with the most MHC-II alleles including 
HLA-DQA1*05:01/DQB1*03:01, HLA-DQA1*05:01/
DQB1*02:01,HLA-DQA1*01:02/DQB1*06:02,HLA-
DQA1*03:01/DQB1*03:02,  HLA-DQA1*01:01/
DQB1*05:01, HLA-DRB1*01:01, HLA-DRB1*04:01, 
HLA-DRB4*01:01 ,  HLA-DRB1*09:01 ,  HLA-
DRB3*01:01, HLA-DRB1*07:01, HLA-DRB5*01:01, 
HLA-DRB1*13:02 ,  HLA-DRB1*03:01 ,  HLA-
DRB1*04:05, HLA-DRB1*11:01 (Tables 2, 3). But, the 
predicted epitope did not interact with HLA-DP allele 
(Fig. 1). 

PEP-FOLD 2.0 server predicted a 3D structure of our 
suggested SSNLYKGVY epitope shown in Fig. 2a. Then 
AutoDock Vina generated the binding energy for the epitope 
SSNLYKGVY with HLA-I and HLA-II molecules. The 
interacted binding energy with HLA-B*1501 (HLA-I) was 
− 7.2 while the HLA-DR (HLA-II) generated − 6.99 kcal/
mol. The 3D structures with epitope are shown in Fig. 2b, c.

Using the IEDB conservancy analysis tool we estimated 
conservancy of the selected 5 epitopes. SSNLYKGVY 
showed the second highest conservancy within both all 
of the available proteins and only glycoproteins of LASV 
(Table 2).

Population coverage of 5 epitopes with their correspond-
ing MHC-I alleles for different continent and countries are 
shown in Table 4. Among the continents, Europe showed 
the highest population coverage of 91.20% as well as South 
Africa showed the second highest population coverage of 
89.83%.

AllerHunter calculated the sequence-based allergenic-
ity of the predicted epitopes. However, the query epitopes 
were predicted as non-allergen which was 0.00 (sensitiv-
ity = 93.0%, specificity = 79.4%).

Table 1   The selected epitopes based on their overall score predicted 
by the NetCTL server

Number Epitopes Overall score (nM)

1 SSNLYKGVY 2.9170
2 CTKNNSHHY 2.9140
3 MTMPLSCTK 1.3934
4 NLYKGVYEL 1.2724
5 VQYNLSHSY 1.0182
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Table 2   The five potential T-cell epitopes, along with their interacting MHC-I alleles and total processing score, and epitope conservancy result

Epitope Interacting MHC-I allele with an affinity of < 200 nM (the total score 
of Proteasome score, TAP score, MHC-I score and processing score)

Epitope conservancy 
within whole proteins (%)

Epitope conservancy 
within glycoproteins 
(%)

SSNLYKGVY HLA-A*01:01 (0.29)
HLA-C*06:02 (0.3)
HLA-C*15:02 (0.55)
HLA-B*35:01 (0.59)
HLA-A*32:15 (0.6)
HLA-C*07:01 (0.61)
HLA-B*15:01 (0.64)
HLA-B*40:13 (0.65)
HLA-C*03:03 (0.8)
HLA-C*14:02 (0.88)
HLA-A*68:23 (0.98)
HLA-B*15:03 (1.03)
HLA-A*32:07 (1.04)
HLA-B*15:02 (1.09)
HLA-C*12:03 (1.41)
HLA-B*15:17 (1.51)
HLA-B*27:20 (1.75)

23.90 98.21

CTKNNSHHY HLA-C*14:02 (0.32)
HLA-C*03:03 (0.38)
HLA-A*68:23 (0.59)
HLA-B*27:05 (0.65)
HLA-C*12:03 (1.08)
HLA-A*32:07 (1.22)
HLA-B*27:20 (2.06)

24.19 99.55

MTMPLSCTK HLA-B*40:13 (− 0.35)
HLA-B*15:02 (− 0.28)
HLA-C*12:03 (− 0.26)
HLA-B*39:01 (− 0.26)
HLA-C*07:01 (− 0.18)
HLA-A*02:17 (− 0.14)
HLA-C*07:02 (− 0.06)
HLA-C*14:02 (− 0.04)
HLA-A*68:23 (− 0.02)
HLA-A*32:07 (0.01)
HLA-C*03:03 (0.13)
HLA-B*27:20 (0.85)

20.27 81.25

NLYKGVYEL HLA-C*03:03 (− 0.04)
HLA-A*32:15 (0.16)
HLA-B*15:03 (0.21)
HLA-C*14:02 (0.28)
HLA-C*07:02 (0.29)
HLA-C*12:03 (0.37)
HLA-A*68:23 (0.43)
HLA-B*40:13 (0.67)
HLA-A*32:07 (0.88)
HLA-A*02:50 (0.89)
HLA-A*24:03 (1.09)
HLA-B*27:20 (1.44)

19.22 81.25

VQYNLSHSY HLA-C*05:01 (− 1.17)
HLA-A*32:15 (− 1.12)
HLA-B*40:13 (− 0.89)
HLA-A*68:23 (− 0.83)
HLA-A*11:01 (− 0.81)
HLA-C*12:03 (− 0.38)
HLA-A*32:07 (− 0.19)
HLA-B*27:20 (0.72)

8.41 33.93



	 3 Biotech (2018) 8:81

1 3

81  Page 6 of 14

Prediction of B‑cell epitope

We used different analysis methods for the prediction of 
B-cell epitope. The physico-chemical properties of peptides 
were determined by utilizing the Kolaskar and Tongaonkar 
antigenicity prediction method. The average antigenic pro-
pensity of the protein was 1.030. The values greater than 
1.00 were considered as potential antigenic determinant. Six 
epitopes were considered to have the potentiality for produce 
the B-cell immunity. The results are summarized in Fig. 3.

A potent B-cell epitope must have surface accessibility 
and the hydrophilic regions. Emini surface accessibility pre-
diction showed the highest and the lowest result of 4.019 
and 0.063, respectively (Fig. 4), and Parker hydrophilicity 
prediction showed the highest and lowest value of 6.8 and 
− 7.629, respectively (Fig. 5). 

In the beta sheet region, the beta turns are frequently 
accessible and significantly hydrophilic in nature. These are 
two properties of antigenic regions of a protein (Rose et al. 
1985). Therefore, Chou and Fasman beta-turn prediction was 
taken place to predict these properties. As the region 42–55 
represents the highest score, it was considered as beta turn 
region (Fig. 6).

Table 3   MHC-II molecules from the desired peptide epitope

Epitope peptide MHC-II molecules

SSNLYKGVY HLA-DQA1*05:01/DQB1*03:01
HLA-DQA1*05:01/DQB1*02:01
HLA-DQA1*01:02/DQB1*06:02
HLA-DQA1*03:01/DQB1*03:02
HLA-DQA1*01:01/DQB1*05:01
HLA-DRB1*01:01
HLA-DRB1*04:01
HLA-DRB4*01:01
HLA-DRB1*09:01
HLA-DRB3*01:01
HLA-DRB1*07:01
HLA-DRB5*01:01
HLA-DRB1*13:02
HLA-DRB1*03:01
HLA-DRB1*04:05
HLA-DRB1*11:01

Fig. 1   Flowchart of the whole work
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It is experimentally proved that the flexibility of the pep-
tide is correlated with antigenicity (Novotný et al. 1986). 
Herein Karplus and Schulz method predicted the flexibility 
of epitope region. According to the results, 42–50 region 
showed higher flexibility (Fig. 7). To predict linear B-cell 
epitope, the Bepipred linear epitope prediction tool was 
used. Region 44–59 showed the highest value for this pur-
pose (Fig. 8). After cross-referencing all the data, we con-
firmed that peptide sequence from 41 to 49 amino acids, 
SSNLYKGVY, claimed the highest potential to induce 
B-cell immune response.

3D model quality assessment

A 3D model of the glycoprotein was constructed to utilize 
a template 3bso_A using MODELLER (Fig. 9a). Then, the 
model refinement was done by YASARA server that pro-
duces the START energy − 58561.6 kj/mol to END energy 
− 118522.2 kj/mol for the built model Supplementary Fig 
S1. The amino acids favored and disfavored region with φ 
and ψ distribution value of the Ramachandran plot through 
PROCHEK of non-glycine and non-proline residues were 
shown in Supplementary Fig S2 and Supplementary Table 1. 
Further, anolea quality assessment also ensured the align-
ment of majority amino acid residues in good region. Sup-
plementary Fig S3.

Fig. 2   Binding confirmation 
of predicted epitope to both 
MHC-I and MHC-II. a Epitope 
structure. b Binding affinity 
of epitope structure to HLA-I 
molecule. c Binding affinity 
of epitope structure to HLA-II 
molecule

Table 4   Population coverage by epitopes with corresponding Class I 
HLA alleles for different areas

Population/area Coverage (%) Average hit PC90

South Asia 80.45 2.25 0.51
Southeast Asia 79.77 2.23 0.49
Southwest Asia 74.87 1.88 0.40
Europe 91.20 3.14 1.08
England 89.66 2.73 0.97
Finland 93.70 3.44 1.31
Germany 93.66 3.28 1.28
Ireland Northern 95.89 3.22 1.51
Ireland South 96.82 3.39 1.67
East Africa 69.43 1.56 0.33
Kenya 75.88 1.70 0.41
West Africa 68.17 1.51 0.31
Guinea-Bissau 49.15 0.77 0.20
North Africa 80.56 2.21 0.51
Mali 61.99 1.51 0.26
Morocco 87.63 2.16 0.81
South Africa 89.83 2.63 0.98
North America 81.64 2.34 0.54
United States 81.87 2.36 0.55
South America 67.97 1.77 0.31
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Binding site and active site analysis of built model

Meta pocket tools explored the two binding sites for the 
binding of molecules or ligands to its target glycoprotein 
(Figs. 9b, 10 and Table 5). CASTp server conferred an 
important prediction about the interaction sites on protein 
with ligand molecules (Fig. 10 and Table 5).

Discussion

The outline of the whole study is illustrated in Fig. 1. To rec-
ognize and characterize the potential epitopes from antigenic 
protein of LASV, several bioinformatics tools are being 

used that may produce efficient B-cell and T-cell mediated 
immunity.

The glycoprotein sequence UniprotKB id: D6NLU3 of 
LASV was considered as potent having a well conserved 
T-cell epitope Supplementary table, S1. Here, from this 
sequence NETCTL server predicted 5 epitopes based on 
their overall score from which epitope SSNLYKGVY posed 
the highest score 2.9170 (Table 1). The most conserved 
T-cell epitope amongst 5 epitopes from NetCTL server was 
SSNLYKGVY that showed higher conservancy, 98.21% 
(Table 2). In our study, we found that 17 HLA-I (HLA-A, 
HLA-B and HLA-C) alleles could interact with SSNLYK-
GVY (Table 2). Besides, there are 16 HLA-II molecules 
could also interact with the epitope SSNLYKGVY (Table 3). 
The efficiency of an epitope vaccine to a great extent relies 

Fig. 3   Kolashkar and Ton-
gaonkar antigenicity predic-
tion. Here the x-axis represents 
sequence position and y-axis 
represents antigenic propensity. 
The threshold value is 1.00. The 
regions above the threshold, 
shown in yellow, are antigenic

Fig. 4   Emini surface accessibil-
ity prediction of the most anti-
genic protein. The x-axis and 
y-axis represent the sequence 
position and surface probabil-
ity, respectively. The threshold 
value is 1.0. The regions above 
the threshold, shown in yellow, 
are antigenic
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on the exact interaction between epitope and HLA alleles, 
expected from this high specific binding affinity. The affin-
ity exposing HLA alleles by SSNLYKGVY were looked 
for population coverage. LASV endemic regions were the 
main focus of search. South Africa, a LASV endemic zone 
was recorded (89.83%) the highest population coverage 
(Table 4).

In Europe, the coverage was 91.20% and North Amer-
ica also had a considerable percentage as the most recent 
LASV outbreak. The epitope declared as non-allergen to 
be an ideal candidate vaccine. The results urged that the 
vaccine might be efficient for a wide epidemic zone all 
over the world. To ensure the binding affinity the epitope 
was docked to both HLA-I allele (HLA-B*15:01) and 
HLA-II (HLA-DR) which resulted − 7.2 and − 6.99 kcal/

mol. According to these results, it is therefore to be con-
firmed that the epitope could bind effectively to HLA-I 
and HLA-II (Fig. 2).

The epitopes affinity for MHC-I molecules and support its 
location as a new vaccine candidate was confirmed by this 
in silico analysis. The B-cell epitope which could induce 
primary and secondary immunity together were searched 
for LASV glycoprotein. We performed bioinformatics tools 
from IEDB database to predict B-cell epitopes based on the 
important features by protein analysis. The common features 
of the region were mentioned such as beta turns, accessibil-
ity to surface, hydrophilic comparatively than other regions 
and proved to be antigenic (Figs. 3, 4, 5, 6, 7 and Table 5). 
The region from 41 to 49 was predicted as potent B-cell 
epitope using Bepipred tool and all the data were referenced 

Fig. 5   Parker hydrophilicity 
scale. Here the x-axis and y-axis 
represent sequence position and 
hydrophilicity scale, respec-
tively. The threshold is 1.0. The 
regions above the threshold are 
hydrophilic, shown in yellow

Fig. 6   Chou and Fasman beta-
turn prediction. The x-axis and 
y-axis represent position and 
score, respectively. The thresh-
old is 1.0. The regions having 
beta turns are shown in yellow
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Fig. 7   Karplus and Schulz flex-
ibility prediction. Here, x-axis 
and y-axis represent position 
and score, respectively. The 
threshold is 1.00. The flexible 
regions are shown in yellow

Fig. 8   Bepipred linear epitope 
prediction. The x-axis and 
y-axis represent the position 
and score, respectively. The 
threshold is 0.35. The higher 
peak regions, shown in yellow, 
indicate more potent B

Fig. 9   3D structure of glycoprotein (a). Binding site of glycoprotein (b)
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(Fig. 8). The 9-mer epitope SSNLYKGVY was the most 
satisfactory peptide as B-cell epitope.

When LASV infection rises to chronic stage it can last for 
long times. Therefore, therapeutic agent is necessary to min-
imize or eliminate the chronic symptoms completely caused 
by the viral infection. Moreover, to provide an inclusive 
safety against LASV infection number of universal drugs 
is required. In our study, we predicted the glycoprotein 3D 

structure (Fig. 9a) for revealing of binding site and active 
site so that this study could effectively contribute to design 
more drugs against Lassa virus. Therefore, we have pro-
jected a refined 3D model Supplementary Fig, S1 which 
showed 94% amino acids were aligned in favored region 
Supplementary Fig, S2 and Supplementary Table 2 further 
model validation confirmed us to be good quality model 
for the studies in drug discovery field Supplementary Fig, 

Fig. 10   Binding site analysis of 
glycoprotein. Here, four bind-
ing site and their amino acid 
residues were shown

Table 5   Binding site and residues analysis

Properties Binding site 1 Binding site 2 Binding site 3 Binding site 4

Grid size (X, Y, Z) X = − 2.651, Y = 16.81, 
Z = − 4.173

X = − 13.901, Y = 19.931, 
Z = − 9.173

X = − 3.901, Y = 18.931, 
Z = − 16.923

X = − 2.151, Y = 22.431, 
Z = − 7.423

Grid space 0.5 0.5 0.5 0.5
Grid angles 90 90 90 90
Volume 230.375 18.875 14.5 13.125
Residues involved in bind-

ing site
Met36, Ile78, Leu86, 

Leu88, Leu111, Asp113, 
Met117, Ser118, Ile120, 
Phe123, Leu125, Val147, 
Ile166, Val170, Ile205, 
Gln206,

Ser74, Leu88, Thr89, 
Leu90, Ala167, Leu181, 
Tyr183, Leu203

Glu87, Thr89, Thr208, 
His213, Glu215, Phe216, 
Ser217

Ile78, Val80, Leu86, Leu88, 
Ala115, Ser118, Ile119

Active residues in binding 
site

Ile78, Leu86, Asp113, 
Ser118, Phe123, Val147, 
Ile205, Gln206

Ser74, Thr89, Leu90, 
Ala167, Leu203

Glu87, Thr89, Glu215, 
Phe216, Ser217

Ile78, Leu86, Ala115, 
Ser118, Ile119
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S3. Consequently, we have identified four binding sites 
Fig. 9b and these active sites where the drugs could bind. 
There were 16 amino acid residues Met36, Ile78, Leu86, 
Leu88, Leu111, Asp113, Met117, Ser118, Ile120, Phe123, 
Leu125, Val147, Ile166, Val170, Ile205, Gln206 involved 
in binding site 1 (comprised with X = − 2.651, Y = 16.81, 
Z = − 4.173; grid space 0.5 and grid angles X, Y, Z = 90) in 
which 8 amino acid residues Ile78, Leu86, Asp113, Ser118, 
Phe123, Val147, Ile205, Gln206 found as active residues. On 
the other hand, 8 amino acid residues Ser74, Leu88, Thr89, 
Leu90, Ala167, Leu181, Tyr183, Leu203 were involved 
in binding site 2 (comprised with Grid size X = −13.901, 
Y = 19.931, Z = − 9.173; Grid space 0.5 and Grid angles 
X, Y, Z = 90) where 5 amino acid residues Ser74, Thr89, 
Leu90, Ala167, Leu203 were predicted as active residues. 
In binding site 3 (comprised with Grid size X = − 3.901, 
Y = 18.931, Z = − 16.923; Grid space 0.5 and Grid angles 
X, Y, Z = 90), Glu87, Thr89, Thr208, His213, Glu215, 
Phe216, Ser217 were found, whereas Glu87, Thr89, Glu215, 
Phe216, Ser217 anticipated as active residues. Lastly, Ile78, 
Val80, Leu86, Leu88, Ala115, Ser118, Ile119 were found 
in binding site 4 (comprised with Grid size X = − 2.151, 
Y = 22.431, Z = − 7.423; Grid space 0.5 and Grid angles 
X, Y, Z = 90) where Ile78, Leu86, Ala115, Ser118, Ile119 
found as active residues (Fig. 10 and Table 5).

In this research, we have suggested a potent T-cell and 
B-cell epitope which might successfully be used to induce 
a complete immune response against LASV. Furthermore, 
the revealing of binding and active site of glycoprotein could 
play a myriad role for expediting the drug discovery field to 
design number of effective drugs against LASV.

Conclusion

In our study, the immunoinformatics analysis of glycopro-
tein proposed a peptide SSNLYKGVY that would let to be 
a candidate target for the universal vaccine to trigger both 
T-cell and B-cell immune response. And also with binding 
and target site depiction on its predicted 3D model could 
assist to drug design against LASV. However, all of these 
results generated from in silico analysis might explore a new 
strategy for better medication against LASV.
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